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SUMMARY

This paper presents a mixed boundary element formulation of the boundary domain integral method
(BDIM) for solving diffusion–convective transport problems. The basic idea of mixed elements is the use
of a continuous interpolation polynomial for conservative field function approximation and a discontin-
uous interpolation polynomial for its normal derivative along the boundary element. In this way, the
advantages of continuous field function approximation are retained and its conservation is preserved
while the normal flux values are approximated by interpolation nodal points with a uniquely defined
normal direction. Due to the use of mixed boundary elements, the final discretized matrix system is
overdetermined and a special solver based on the least squares method is applied. Driven cavity, natural
and forced convection in a closed cavity are studied. Driven cavity results at Re=100, 400 and 1000
agree better with the benchmark solution than Finite Element Method or Finite Volume Method results
for the same grid density with 21×21 degrees of freedom. The average Nusselt number values for natural
convection 1035Ra5106 agree better than 0.1% with benchmark solutions for maximal calculated grid
densities 61×61 degrees of freedom. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The velocity–vorticity formulation of Navier–Stokes equations for the boundary domain
integral method (BDIM) was introduced by Wu [1] and S& kerget et al. [2]. The main advantage
of the velocity–vorticity formulation of the Navier–Stokes equations is the numerical separa-
tion of kinematic and kinetic aspects of the fluid flow from the pressure computation. Since the
pressure does not appear explicitly in the field functions conservation equations, the well-
known difficulty arising from the computation of the boundary pressure values in incompress-
ible fluid motion is avoided. In the BDIM, the surface vorticity is computed directly from the
kinematic computation.

To accelerate the convergence and stability of the coupled velocity–vorticity iterative
scheme, the false transient approach is applied to the kinematic equation rendering it to the
parabolic partial differential equation (PDE), see [3,4].

The main restriction of the classic BDIM for fluid dynamics is the availability of the
fundamental solutions for PDE with constant coefficients only. The problem can be solved by
locally partitioning the non-linear coefficients into constant and variable parts, see Z& agar and
S& kerget [5], Rek and S& kerget [6]. However, if the whole domain is treated as one, the system
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matrix is full and non-symmetric, and therefore cumbersome to solve. Both problems can be
eliminated by decomposing the whole domain into subdomains. In the extreme case of domain
decomposition, e.g. each subdomain is one cell surrounded by four boundary elements, and
different material properties can be applied to each subdomain, see Zagar and S& kerget [7]. The
system matrices are sparse and well suited to modern iterative solution methods, see Hribersek
and S& kerget [8].

The derivative of the field function in the normal direction to the boundary element (‘flux’)
is computed explicitly from discretized BDIM integral equations in implicit matrix system. For
this reason the unit normal vector in the flux interpolation nodal point has to be known. In
the rectangular subdomain vertex the normal direction is undefined. This problem is solved by
using the discontinuous approximation for the function and the flux [2], see Figure 2. By
definition, the first and major disadvantage is the discontinuous field function approximation
and, therefore, the conservative field function is not preserved. The second disadvantage is a
significant increase in the number of nodal points, which slows down the rate of solution
convergence and increasing the computer memory demands. The third disadvantage is the
non-unique approximation of the field function over the subdomain with the increased number
of boundary nodal points, see [9].

The idea of mixed elements, presented in this paper, represents an alternative approach in
BDIM. The basic idea of mixed elements is to split the field function and flux nodal points to
keep the advantages of function continuous approximation and to avoid the undefined normal
directions of flux interpolation nodal points. Therefore, the function is approximated with
continuous interpolation polynomials while flux is interpolated with discontinuous interpola-
tion polynomials. As a consequence, the advantages of continuous field function approxima-
tions are retained and its conservation is preserved while the normal flux values are modelled
in a proper way. When using continuous elements of high orders, the application of the
matching conditions of common interfaces, i.e. the matrix assembly, leads to an overdeter-
mined system of algebraic equations. Instead of using one of the several schemes that reduce
the overdetermined system to a closed system, see Banerjee and Butterfield [10], the overdeter-
mined system matrix is solved in a least squares sense.

The aim of the present work is to show an efficient use of the mixed elements in BDIM for
a velocity–vorticity formulation of Navier–Stokes equations. In Section 2, the governing
equations are stated and in Section 3, the numerical solution with BDIM is presented. In order
to test the validity and effectiveness of mixed elements in BDIM several test examples were
computed. In Section 4, the first test example is a driven cavity with velocity and vorticity
profiles compared with benchmark solutions by Ghia et al. [11] and two other commercial
programmes. In Section 5, the test case is a natural convection in a closed cavity, where an
average Nusselt number value is compared with a benchmark solution by Davis [12]. The last
test example in Section 6 is a mixed convection in a cavity, e.g. natural and forced convection.
The results are compared with results obtained by the finite element method (FEM) by Lee
and Chen [13].

2. GOVERNING EQUATIONS

The Navier–Stokes equations for plane viscous incompressible fluid flow can be written in
velocity–vorticity formulation for kinematics, kinetics and heat energy transport respectively,
see S& kerget et al. [2].

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 861–877 (1999)
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where 6i is Cartesian velocity, v is the vorticity, T is the temperature, eij is the unit permutation
symbol, F=b(T−T0) is the Boussinesq approximation of the buoyancy effect, gi is the
gravity, n is the viscosity, k is the thermal diffusivity, r is the fluid density, cp is the specific
isobaric heat and I is the source of heat generation.

To accelerate convergence and stability of the coupled velocity–vorticity iterative scheme,
the false transient approach is applied to the kinematic equation, rendering it to parabolic
PDE satisfied only at t��, with a treated as a relaxation parameter, see [4].

2.1. Boundary conditions

Boundary conditions in kinematics and heat energy transport can be Dirichlet, Neumann or
Cauchy, while boundary conditions v�G used in kinetics are Dirichlet calculated directly from
kinematic results as a curl of the velocity field [9].

v=eij

(6i
(xj

.

3. NUMERICAL SOLUTION

3.1. Integral representation of parabolic diffusion–con6ecti6e equation

Transport equations for kinematics, kinetics and heat energy transport (1) can be written in
a general form as

a
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where u is conservative field function, a is the diffusivity coefficient and I is the source term.
Boundary conditions on G and initial conditions in domain V have to be known

u= ū,
(u
(n

=
(u
(n

in G for t] t0, (3)

u= ū0 in V for t= t0. (4)

By using a finite difference approximation of the field function time derivative for the time
increment Dt= tF− tF−1, e.g.

(u
(t
:

uF−uF−1

Dt
, (5)

the differential formulation can be transformed into an equivalent integral statement by
Green’s theorems for scalar functions, see S& kerget [9].
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where nj is the normal direction to the nodal point. The variable u* is the modified Helmholtz
fundamental solution, i.e. the solution of equation

(2u*
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−m2u*+d(j, s)=0, (7)

and given for the plane case as
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where the parameter m is defined as

m2=
1

aDt
=b. (9)

K0 and K1 are the modified Bessel functions of the second kind and rj(j, s) is the vector from
the source point j to the reference field point s, e.g. rj=xj(j)−xj(s) for j=1, 2, while r is its
magnitude r= �rj �.

Other fundamental solutions can be applied, e.g. elliptic diffusion–convective, but in all
presented numerical examples the modified Helmholtz fundamental solution is used.

3.2. Discretization

The solution domain is discretized in subdomains, as in the FEM or the finite volume
method (FVM), e.g. each subdomain is surrounded by four boundary elements. The quadratic
discrete model is presented in Figure 1.

With the discontinuous approximations of flux (u/(n, the undefined normal in the vertex
points of a subdomain is avoided. Boundary element interpolation polynomials can be split for

Figure 1. Discretization: (a) continuous quadratic interpolation of u, (b) discontinuous quadratic interpolation of
(u/(n along boundary element, (c) continuous quadratic interpolation of function in subdomain. × represents a u

nodal points, while � represents a (u/(n nodal point.
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field function Fu
n and its flux Fq

n, see caption in Figure 1, where the index n refers both to the
number of interpolation nodes in each boundary element or subdomain and to the degree of
the respective interpolation polynomial.

The interpolation polynomials for function approximation over the boundary element
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which are the functions of the geometry, time increment and material properties, representing
the integration over individual boundary element or subdomain, the following discretized
equation can be written, corresponding to the integral equation (6),
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Figure 2. Classic BDIM quadratic subdomains (left) and mixed BDIM subdomains (right). × represents a u nodal
points, while � represents a (u/(n nodal point.

Applying Equation (11) to all unknown boundary nodes, functions and fluxes for each
subdomain, the following rectangular implicit matrix system is obtained:�
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3.3. Interface boundary conditions

Accounting for the boundary conditions in Equation (3) and the compatibility and equi-
librium interface conditions between subdomains I and II
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(n

)
I

= −
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, (13)

the following system is obtained:

[A ]M×N{x}N={F}M, (14)

where M is the number of equations and N is the number of unknowns. The resulting system
of equations has more equations than unknowns, hence it should be solved using a special
algorithm.

In the classic BDIM formulation, the nodal points for the field function and the flux
interpolation are the same, Figure 2 (left), and always between two subdomains. For each
nodal point between two subdomains, two unknown values exist (function and flux), and two
discretized subdomain integral equations, one from both neighbouring subdomains needs to be
solved. After coupling them with interface boundary conditions (13) the resulting system shows
two discretized integral equations with two unknowns.

The extension of this principle for mixed boundary elements is not straightforward. First,
the vertex point of a subdomain can be surrounded by four subdomains. Second, at the nodal
point, one value is unknown, either the function or the normal flux, Figure 2 (right), but at
least two equations are available from each neighbouring subdomain. If the classic procedure
is followed, then at least one equation is lost at each nodal point and the results are false. To
keep the influence of all related subdomains, the equations must be confined to a system that
produces an overdetermined system.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 861–877 (1999)
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3.4. Sol6er

One of the simplest approaches for solving an overdetermined set of algebraic equations
(14), where is M\N, is finding a least squares solution using QR decomposition of A=Q ·R,
where R is upper triangular and Q is orthogonal matrix (‘gen. LLS’) [14]. Since, in this case,
the system matrix A is sparse and block banded, the iterative linear least squares solver (LLS)
of Paige and Saunders (iter. LLS) [15] is much faster at the same solution accuracy. Only the
non-zero elements have to be stored in computer memory, therefore, much larger problems can
be solved.

Generalized and iterative solvers are compared for solving of a diffusion–convective
problem known as an entry flow, Table I. The solution residuum is calculated as

res=

Ax−b
2


b
2

, (15)

where x is the obtained solution.

4. NATURAL CONVECTION IN A CLOSED CAVITY

4.1. Problem definition

The problem considered is that of a two-dimensional flow of a Boussinesq fluid for Prandtl
number 0.71 in an upright square cavity described in non-dimensional terms 05x51 and
05y51, with y upwards. Both velocity components are zero on the boundaries. The
horizontal walls are isolated and the vertical sides are at temperatures T( =1 and T( =0. Due
to the buoyancy force, the fluid begins to rotate. Geometry and boundary conditions are
presented in Figure 3.

The solution of this problem (velocities, temperature and rates of heat transfer) was
obtained for Rayleigh numbers of values 103, 104, 105 and 106. The problem statement is the
same as in Davis and Jones [12].

The BDIM is compared with benchmark solutions by Davis, which are obtained from
different grid densities up to 81×81 points and their extrapolation to infinite density. The
accuracy of BDIM is compared with Davis and FEM at the same number of degrees of
freedom for function per domain of solution. FEM results are obtained with the equal grids
of 9-node quadratic elements, equidistant and non-equidistant as described in Exercise 7 in the
FIDAP Examples Manual (Fluid Dynamics International) [16]. Extreme values of velocities

Table I. Comparison of generalized and iterative linear least squares solver

Gen. LLSMatrix parameters Iter. LLS

resSparse CPUNMNsub resCPU

216 111 0.124 0.00024 0.17 0.00003 0.2616
1.80.0000223.00.000050.03344794464

2184 1007 0.015256 0.00001 1435.0 0.00002 15.0
—0.002921516 128 67.00.00027—1024

Nsub means number of subdomains, M and N are the number of equations and
unknowns respectively, the sparse coefficient is calculated as the number of non-zero
elements in a matrix divided by M � N, res is the normalized solution residuum, see
Equation (15).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 861–877 (1999)
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Figure 3. Geometry and boundary conditions for natural convection.

Figure 4. Grid density 21×21 dof and 41×41 dof with a ratio longest/shortest=6.

are obtained with interpolation between grid points at Davis and BDIM, while the FEM
results are obtained at grid points without interpolation.

4.2. Results

Computations are performed for different grid densities, equidistant and non-equidistant
grids with a ratio of 6 between the longest and the shortest element, see Figure 4. In
Tables II, III, IV and V, the following results are presented:

number of subdomains in BDIM, while at FEM number of elementsNsub

number of degrees of freedom for functionNdof

6x,max the maximum horizontal velocity on the vertical mid-plane of the cavity and
as its location at grid point;y
the maximum vertical velocity on the horizontal mid-plane of the cavity and6y,max

as its location at grid point;x
the average Nusselt number value throughout the cavity;Nu
the average Nusselt number value on the left vertical boundary of the cavity atNu0

x=0.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 861–877 (1999)
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The formulation for a modified Helmholtz fundamental solution is used. The steady state
is computed for cases with Ra=103, 104 and 105, with one time step Dt=1016 and with
a different underrelaxation factor for vorticity kinetics 1.0, 0.1, 0.01 respectively. The
steady state for Ra=106 is computed as a transient case with Dt=10−3 and 0.5 as an

Table II. Natural convection at Ra=103, quadratic discretization, equidistant
grid

Davis BDIMFEM

10×10 20×20 30×30Nsub 10×106×6
21×21 13×13 21×21 41×4121×21 61×61Ndof Bench

3.649 3.6493.6493.6483.5933.6346x,max 3.589
0.8110.813 0.815 0.8150.800 0.813y 0.813

3.6976y,max 3.629 3.660 3.643 3.698 3.696 3.697
0.178x 0.181 0.200 0.158 0.178 0.179 0.179

1.111 1.120 1.117 1.1171.118Nu 1.118 1.118
1.1171.1201.1131.117Nu0 1.1181.1181.117

Table III. Natural convection at Ra=104, quadratic discretization, equidis-
tant grid

FEM BDIMDavis

10×10 20×206×6 30×3010×10Nsub

41×41 61×6113×1321×2121×21BenchNdof 21×21

6x,max 16.178 16.189 15.987 16.040 16.18116.16816.190
0.8000.8200.823y 0.822 0.8230.8230.842

6y,max 19.617 19.197 19.268 20.262 19.351 19.596 19.627
x 0.119 0.125 0.100 0.121 0.121 0.120 0.119

2.2432.2442.2702.297 2.2432.2122.243Nu
2.270 2.244 2.243 2.243Nu0 2.238 2.255 2.297

Table IV. Natural convection at Ra=105, quadratic discretization, equidistant
grid

FEM BDIMDavis

6×6 10×10Nsub 20×20 30×3010×10
Ndof Bench 21×21 21×21 13×13 21×21 41×41 61×61

6x,max 34.73 36.46 33.93 37.09 34.74 34.92 34.71
y 0.850 0.870 0.856 0.855 0.8500.855 0.854
6y,max 68.59 62.79 65.65 70.67 67.75 68.61 68.59
x 0.0600.0650.0680.0880.0500.0750.066

4.5154.5044.4934.7214.8954.4544.519Nu
Nu0 4.509 4.716 4.895 4.720 4.493 4.492 4.515

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 861–877 (1999)
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Table V. Natural convection at Ra=106, quadratic discretization, non-equidistant
grid, ratio longest/shortest=6

Davis BDIMFEM

Nsub 10×10 6×6 10×10 20×20 30×30
Bench 21×21 21×21 13×13 21×21 41×41 61×61Ndof

64.5564.4569.33—335.5679.2764.636x,max

0.887—0.7540.862 0.8610.850y 0.849
6y,max 219.36 195.44 198.17 — 215.73 220.07 220.54

0.038 0.045 0.039 — 0.0380.034 0.037x
Nu 8.800 9.027 7.653 — 8.852 8.763 8.808

8.797Nu0 7.6529.5028.817 8.8088.769—

Figure 5. Average Nusselt number error of BDIM against a grid density for different Ra numbers.

underrelaxation factor. The convergence criteria for all runs have been 10−4. Figure 5 shows
the average Nusselt number error computed as

Nuerr=
�Nui−Bench�

Bench
×100

against a grid density. It is obvious that the results converge to a benchmark solution. Keep
in mind that, for Ra=106, the grid is non-equidistant, resulting in a smaller error value than
at equidistant grid for Ra=105.

An accuracy comparison between the finite difference method of Davis, the finite element
method and the BDIM is presented in Figure 6, where the average Nusselt number error is
plotted against the Ra number at the same grid density of 21×21 dof. The BDIM results agree
the best to benchmark solution, except at Ra=105, where it is very close to Davis.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 861–877 (1999)



MIXED BOUNDARY ELEMENTS 871

5. DRIVEN CAVITY FLOW

5.1. Problem definition

The problem considered here is that of a square cavity totally filled with an incompress-
ible viscous fluid and a moving bottom wall at a constant velocity. Geometry and
boundary conditions are presented in Figure 7.

The test case is used because many results have been obtained by different authors using
different numerical approaches. The results are compared using the work of Ghia et al. [11]
as a benchmark solution to this problem. The test case was solved using two commercial
codes: the FIDAP (Fluid Dynamics International) with the FEM and the TASCflow (Ad-
vanced Scientific Computing) [17] with the FVM; therefore, we can now make a compari-
son of the three different methods on an equal grid with the same number of degrees of
freedom.

Figure 6. Average Nusselt number error comparison between the finite difference method of Davis, FEM and BDIM
at the same grid density of 21×21 dof.

Figure 7. Geometry and boundary conditions for a driven cavity.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 861–877 (1999)
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Table VI. Driven cavity at Re=100; comparison of extreme values with the
benchmark values of Ghia

dof l/s 6x−min 6y−max 6y−min

21×21FEM 1 −0.178 0.217 −0.152
21×21 1 −0.191FVM 0.233 −0.160

BDIM 21×21 1 −0.213 0.259 −0.177
BDIM 21×21 6 −0.219 0.254 −0.183

41×41 1 −0.214BDIM 0.254 −0.179
Ghia 129×129 1 −0.211 0.245 −0.175

Table VII. Driven cavity at Re=400; comparison of extreme values with the
benchmark values of Ghia

l/sdof 6y−min6y−max6x−min

6 −0.286 0.405 −0.26121×21FEM
FVM 21×21 6 −0.170 −0.1720.315
BDIM 21×21 6 −0.347 −0.3170.451

−0.284.FEM 41×41 6 −0.309 0.430
FVM −0.2300.38741×41 −0.2376

41×41BDIM −0.3060.458−0.3276
129×129 1 −0.327 0.450Ghia −0.302

Table VIII. Driven cavity at Re=1000; comparison of extreme values with the
benchmark values of Ghia

6y−mindof l/s 6x−min 6y−max

−0.1420.264−0.157621×21FEM
−0.171621×21 0.321FVM −0.157

BDIM 21×21 −0.4016 −0.384 0.503
−0.2110.359−0.264641×41FEM
−0.227FVM 41×41 6 −0.243 0.411
−0.371BDIM 41×41 6 −0.389 0.533

1 −0.383Ghia −0.3710.516129×129

5.2. Results

The formulation for a modified Helmholtz fundamental solution is used. The steady state is
computed for cases Re=100, 400 and 1000 with one time step Dt=1016 and a different
underrelaxation factor for vorticity kinetics 0.1, 0.01, 0.001 respectively. The convergence
criteria for all runs were 10−4.

The FEM results at Re=100 and 400 are computed without upwinding, while at Re=1000,
an upwinding factor of 1.25 was necessary to obtain a good solution.

The FVM results are computed as a transient case with Dt=10−3. The convergence criteria
was 10−6.

Tables VI, VII and VIII show the minimum velocity 6x along the vertical line through the
centre of the cavity and the minimum and maximum velocity 6y along the horizontal line
through the centre of the cavity. Extreme values of velocities are obtained with interpolation

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 861–877 (1999)
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between the grid points at BDIM, while the FEM and FVM results are obtained at grid points
without interpolation. The velocity profile comparison between FVM, FEM, BDIM and the
benchmark solution of Ghia is presented in Figures 8–12 for the same grid densities of 21×21
and 41×41 dof, being equidistant or non-equidistant.

At a low Reynolds number (Re=100, Figure 8), the results are approximately equally
accurate, with the slightest advantage being with the BDIM. The BDIM results for the
equidistant grid 21×21 dof agree well with the benchmark solution, bearing in mind that the
mesh density in the benchmark case was for the grid 129×129 nodes.

At Re=400, Figures 9 and 10, the best results are obtained using the BDIM, followed by
the FEM, while the FVM solution differs significantly at both grid densities. The FEM results
improved significantly with higher grid densities. The nodalization analysis of the BDIM
results between grids 21×21 and 41×41 dof shows very slight profile changes in the direction
compared with the benchmark solution (compare Figures 9 and 10).

Figure 8. Driven cavity at Re=100. Comparison of BDIM results with FVM, FEM and benchmark solutions by
Ghia, horizontal velocity at x=0.5 (left) and vertical velocity at y=0.5 (right). Grid density 21×21 dof with a ratio

longest/shortest=1.

Figure 9. Driven cavity at Re=400. Comparison of BDIM results with FVM, FEM and benchmark solutions by
Ghia, horizontal velocity at x=0.5 (left) and vertical velocity at y=0.5 (right). Grid density 21×21 dof with a ratio

longest/shortest=6.
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Figure 10. Driven cavity at Re=400. Comparison of BDIM results with FVM, FEM and benchmark solutions by
Ghia, horizontal velocity at x=0.5 (left) and vertical velocity at y=0.5 (right). Grid density 41×41 dof with a ratio

longest/shortest=6.

Figure 11. Driven cavity at Re=1000. Comparison of BDIM results with FVM, FEM and benchmark solutions by
Ghia, horizontal velocity at x=0.5 (left) and vertical velocity at y=0.5 (right). Grid density 21×21 dof with a ratio

longest/shortest=6.

At Re=1000, Figures 11 and 12, the advantage of the BDIM is most evident. The FEM and
FVM results at these grid densities failed to predict flow circumstances. Again, the BDIM
profiles agree well with the benchmark solution at both grid densities (compare Figures 11 and
12).

6. LAMINAR MIXED CONVECTION IN A DRIVEN CAVITY

6.1. Problem definition

The basic aim of this problem study is the influence of the buoyancy force on the velocity
and temperature distribution in a driven cavity.
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Consider a driven cavity flow, with a moving and heating bottom boundary at y=0. The
dimensionless temperature T( =1 is set on this moving boundary and T( =0 on the rest. At the
driven wall, the buoyancy force has the maximum effect and pulls the fluid in the direction of
the driving wall movement, so there is a very thin and negligible viscous sublayer. We can treat
these phenomena as a Couette flow [18] and set boundary conditions directly at the moving
wall (see Figure 13).

The results of different Gr numbers are compared with the results obtained by Lee and Chen
[13] calculated by the FEM only for a non-equidistant 10×10 grid with a ratio of longest/
shortest equal to 10. No nodalization analysis is presented in the original paper by Lee.

6.2. Results

The BDIM nodalization analysis shows a slow convergence of average Nusselt number
values at each wall, see Tables IX, X and XI. The BDIM results on different grids differ
because of the different lengths of the modelled moving boundary. In vertex points x=0, y=0
and x=1, y=0, the boundary conditions are undefined, either velocity in the x-direction or
the temperature is set for a moving wall or a static wall. After a detailed investigation, a static
wall with 6x=0 and T=0 are chosen. With this decision made, the actual modelled moving
boundary is longer with a higher grid density, and, consequently, there is a higher rate of heat

Figure 12. Driven cavity at Re=1000. Comparison of BDIM results with FVM, FEM and benchmark solutions by
Ghia, horizontal velocity at x=0.5 (left) and vertical velocity at y=0.5 (right). Grid density 41×41 dof with a ratio

longest/shortest=6.

Figure 13. Geometry and boundary conditions for mixed convection in a driven cavity.
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Table IX. Mixed convection at Re=100, Gr/Re2=0.0

Lee BDIM

10×10 6×6Nu 10×10 12×12 20×20

2.342 2.621 2.666x=0 2.734 3.085
y=1 0.453 0.514 0.562 0.566 0.605

4.881 4.648 5.498 5.635x=0 5.821
7.676 7.783 8.726S 8.935 9.511
7.728 7.784y=0 8.726 8.935 9.511

Table X. Mixed convection Re=100, Gr/Re2=0.1

Lee BDIM

10×10 6×6 10×10 12×12 14×14Nu

2.328 2.597 2.662x=0 2.730 3.079
0.504 0.565 0.623 0.626 0.614y=1
4.980 4.715 5.562x=0 5.702 5.852

S 7.812 7.877 8.847 9.058 9.545
y=0 7.868 7.878 8.846 9.059 9.545

Table XI. Mixed convection Re=100, Gr/Re2=1

BDIMLee

10×10 6×6Nu 10×10 12×12 20×20

x=0 2.278 2.572 2.588 2.736 3.044
y=1 0.763 0.876 0.966 0.905 0.965

5.360 5.018 5.967 6.2835.974x=0
S 8.401 8.466 9.521 9.615 10.292

10.2928.466 9.6168.473 9.520y=0

transfer going through it. With the increasing Gr number, the rate of heat transfer is increased
slightly.

There is a slight disagreement between the BDIM results and those of Lee. The flux balance
error of Lee is approximately 0.5%, while that for the BDIM is less than 0.01%.

7. CONCLUSIONS

A new mixed boundary element approach in BDIM was successfully tested through several test
cases. The accuracy of the BDIM results are significantly higher in comparison with the FEM
and FVM for the same grid density, but higher CPU consumption is the price that has to be
paid. In order to make the BDIM more economical, a different solver for an overdetermined
matrix should be developed.
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